Unit 9: Plant Notes

- A. Typical Plant Cell
 - 1. 3 differences from animal cell: ______

B. Plant Characteristics

- 1. made of many cells
- 2. Eukaryotes- have nucleus & membrane bound organelles
- 3. Cell Walls made of ______(complex carbohydrate)
- 4. _____- make own energy through _

C. Evolution of Plants

lants ______and liverworts 1. ____

- i. Earliest to evolve to live on land
- ii. Non vascular –
- iii. Live close to ground
- iv. No stems or roots
- v. Use ______ to move water throughout the plant
- vi. Water needed for _____
 - vii. are produced!
- Adaptation: Plants
 - viii. Better adapted to live on land
 - ix. Bigger and
 - x. Have vascular tissues for transport
 - 1. _____ up from roots to leaves
 - 2. _____ moves _____ (glucose) down from leaves to roots
 - xi. Have roots and shoots (stems)
 - xii. XYLEM & PHLOEM
 - 1. Uses adhesion and cohesion
 - 2. _____- water molecules sticking to something else
 - 3. _____- water molecules sticking to each other
 - i. Have Vascular Tissue (medium plants)
 - ii. _____ plants that reproduce with _____
 - iii. Leaves are called _____
- Adaptation: Seeds

2. _____

- iv. Zygote surrounded by a protective covering
- v. Can stay in a state of _____ (no growth) for long periods.
- vi. Dormancy ends with or early growth

- e. In the ______ plants can keep stomata ______ to remove _____ water
- 2. Stem 1. Carries food and water through the plant 2. for the elevation of leaves, fruits and flowers 3. Stem keeps the leaves in the light 4. Contains xylem and phloem for nutrient and water movement _____ nutrients or carbohydrates 5. ____ a. Underground stems called _____ 3. Roots 1. Carries water from the soil to the plant 2. Water and Nutrients are through the roots 3. _____a plant to the ground to keep it from moving 4. Types of roots a. _____- reach ______ underground b. - spread out and follow the water close to the fibrous root system tap root system 4. Flower or cone i. ____ ii. Ovary turns into on flowering plants F. Plants vs. Humans 1. Reproduction: Plants and humans use . They have male and female reproductive structures; the _____ come together to fertilize 2. Transport: vascular system vs. Cardiovascular system; plants transfer water and minerals through ______ while humans use the 3. Response: Both humans and plants use ______ to control their bodies G. Plant Hormones 1. Hormones signal for things to happen just like in humans i. Promote and inhibit cell division ii. Control Growth of plant organs iii. This system maintains the plant's iv. Ex. Ethylene H. Plant Responses (_____tropism) tropism 1. _ i. Plant responds to _______ stimulus using hormone auxin by growing the light source. 2. _____tropism i. Plant responds to ______ by roots growing down and leaves/stems growing _____. tropism i. Plants respond to or physical contact

Unit 9: Photosynthesis Notes

- Energy and Life
 - Autotrophs and Heterotrophs

_____use light energy to produce food Ex: all _____ _____obtain energy from______they consume Ex: all animals

- **REMEMBER: Cellular Respiration Review**
 - Makes ATP in the _____ _____ (plants) and ______ (animals) do this process
 - ATP for Photosynthesis comes from light energy Adenine 3 Phosphate • Chemical Energy and ATP groups
 - Storing Energy _____ Releasing Energy - ____ \rightarrow ____ •
- Using Biochemical Energy

- Ribose ATP is used to power all cell activities including photosynthesis •
 - ATP basic _______ source of ______ cells, both plants and animals
 - By ______ between the ______ & _____ phosphate, energy is
- <u>A</u>denosine <u>T</u>riphosphate _____ high energy compound
- Adenosine Diphosphate _____ low energy compound
- **Investigating Photosynthesis**
 - Plants use the energy of sunlight to convert ______ and _____ into and high energy _____
 - Van Helmont's Experiment Plant growth & weight comes from water and CO₂ in the air
 - Priestley's Experiment - plants produce O₂
 - Jan Ingenhousz Light is necessary for plants to live and produce O2 and sugar (this led to the • photosynthesis equation)
- Photosynthesis Equations and Reactants and Products

Light	_		+		_		+	•
					Light			
Carbon dioxide + water → sugars + oxygen		oxygen	+	sugars	\rightarrow	water	Carbon dioxide +	

Reactants	Products
Carbon Dioxide	Sugar
Water	Oxygen

- Photosynthesis Location
 - Takes place in the chloroplasts of the cell
 - Parts of the Choloroplast:

(P)-(P)-(P)

- ______ stack of thylakoid
 ______ photosystems are clusters of pigments that absorb light energy. Found in sac-like photosynthetic membranes. Light-dependent reaction occurs here
- _____(space) = Light independent reaction called Calvin Cycle takes place here
- Light and Pigments- why the plant is green
 _____-a and chlorophyll-b are
 - _____ in a chloroplasts

• Two reactions in photosynthesis (inside the chloroplast)

Process	Location	Reactants	Products
Light dependent reactions (Photosystem II & I)	Thylakoid	Water	ATP NADPH Oxygen
Light independent reactions (Calvin Cycle)	Stroma	ATP NADPH Carbon Dioxide	Glucose

- Summary: Photosystem II & I, light collecting pigments in thylakoid membrane, send ATP and NADPH to the stroma.
 - Excited electrons are passed to electron transport chain (similar to Cellular Respiration)
 - What is given off?
 - ______, ______, ______&_____
 - NADPH and ATP are high energy and will be used in the dark reaction cycle.
 - Inside a _____
 - Photo II Light hits chlorophyll in the thylakoid membrane, H+ is a carrier forced into membrane, electron moves through the ETC
 - Electron Carriers Photo I and re-energizes ATP & NADPH

• The _____

- occurs in the stroma (Light ______ Reaction)
- Summary: High energy sugars are the product of Calvin Cycle, uses CO₂, and ATP & NADPH from Photo I to make sugar______.
 - _____- ribulose bisphosphate, 5C starts and ends Calvin Cycle. Combines with CO₂
 - _____ phosphoglyceric acid, 3C
- _____- phosphoglyceraldehyde
- Photosynthesis vs. Cellular Respiration
- The ______ of one are used as the ______ of the other: