Unit 7 Part II Notes: Cellular Respiration

Cellular Respiration

*Overview of Cellular Respiration (Know sequence of events)

Cell Respiration - The process that releases energy (ATP) by breaking down ______and other food molecules in the presence of ______ (_____). This is an ______ reaction.

- NAD+ acts as the electron carrier (NAD –Nicotinamide adenine dinucleotide)
- Occurs in ______ eukaryotic cells, plants included!

6O₂+ C₆H₁₂O₆ → 6 CO₂+ 6 H₂O + Energy (36 ATP)

Overview:

Fermentation

(without oxygen)

lactic acid

2nd step - Krebs Cycle

- 2nd step, occurs in
- Starts with pyruvic acid and gives off ______ dioxide
- Energizes NAD+ to form NADH (______ carriers) high energy • **Results:**
- High energy carriers (NADH and FADH2) take ______ to ETC
- Carbon dioxide is breathed out
- 2 _____ formed

<u>3rd step- Electron Transport Chain (ETC)</u> – 3rd step Occurs between ______ in the

mitochondria in all animals, plants and

- Carrier proteins ______ in the mitochondrial membrane pass high-energy ______ along and • H+ into the intermembrane space
- Oxygen is the final electron ______ and combines with hydrogen to form water
- As the amount of H+ builds in the ______ space, one H+ rushes back across the _____ membrane • causes ATP synthase to spin, re-energizing ADP to _____
- Each pair of e-generate enough energy to ______ 3 ADP to 3 ATP. •
- Total ATP = ____
- Total ATP generated in all steps of _____ = 36

Energy and Exercise

•

- Cells normally contain enough ______ for a few seconds of intense activity.
- After 90 seconds, cellular respiration supplies ATP
 - For long-term activity, ______ stored in the muscle is burned and lasts 15-20 minutes. After that, other ______ such as fat are burned for energy (aerobics, running & swimming)
- Need to breathe ______ after exercise to repay oxygen debt and rid body of ______ acid

Cellular Respiration

Comparing Photosynthesis and Cellular Respiration

- Photosynthesis does not release energy from glucose
- _____ removes CO2 and _____ returns it.
- ______ in photosynthesis are ______ in respiration.
- Cellular Respiration RELEASES energy through glucose, Photosynthesis STORES energy through glucose

Photosynthesis makes the glucose, cellular respiration breaks the glucose!

