Unit 7 Part II Notes: Cellular Respiration

Cellular Respiration

*Overview of Cellular Respiration (Know sequence of events)

Cell Respiration - The process that releases energy (ATP) by breaking down \qquad and other food molecules in the presence of \qquad (\qquad). This is an \qquad reaction.

- NAD+ acts as the electron carrier (NAD -Nicotinamide adenine dinucleotide)
- Occurs in \qquad eukaryotic cells, plants included!

$$
6 \mathrm{O}_{2}+\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \longrightarrow 6 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}+\text { Energy (36 ATP) }
$$

ATP -
 \qquad Supplies energy for all cellular processes

Comparison

of ATP/ADP to a Battery:

Overview:

$\mathbf{1}^{\text {st }}$ step-Glycolysis is when one molecule of \qquad is broken in \qquad producing two molecules of acid a 3-C compound.

- If oxygen is present then pyruvic acid enters \qquad Cycle
- If no oxygen then pyruvic acid enters process

Glycolysis - Occurs in the cytoplasm
A. Starting molecule is glucose
B. ATP Production - \qquad ATPs are needed at beginning, but 4 are produced, total of 2 net gain for the cell.
C. \qquad is a carrier for electrons to the electron transport chain \qquad).
D. 1 glucose $=2$ pyruvic acid +2 ATP $=2$ NADH
E. Total ATP = \qquad

Glycolysis

Fermentation

\qquad
B. Types:

1. Alcoholic fermentation by yeast and some bacteria

Pyruvic acid + \qquad \rightarrow alcohol $+\mathrm{CO}_{2}+$ \qquad

- ____ dioxide causes bread to rise, heat in baking evaporates any alcohol.
- Used to produce beer and wine

2. Lactic acid fermentation
\qquad acid + NADH \rightarrow Lactic acid + NAD+

- Produced in muscles during \qquad exercise when the body cannot supply enough
\qquad . Leads to soreness.
- Unicellular organisms ferment food and beverages. Ex: yogurt, \qquad buttermilk, sour cream, pickles, sauerkraut

Chemical

Pathways

$\mathbf{2 n d}^{\text {nd }}$ step - Krebs Cycle

- $2^{\text {nd }}$ step, occurs in \qquad
- Starts with pyruvic acid and gives off \qquad dioxide
- Energizes NAD+ to form NADH (\qquad carriers) high energy

Results:

- High energy carriers (NADH and FADH2) take \qquad to ETC
- Carbon dioxide is breathed out
- 2 \qquad formed

The Krebs Cycle

OAA - Oxaloacetate is a 4 Carbon molecule with low energy FADH ${ }_{2}-$ Flavin adenine dinucleotide + hydrogen

Mitochonarion

$$
\begin{aligned}
& \text { Succinate }-4 \\
& \text { carbon compound } \\
& \text { with energy } \\
& \text { NADH - } \\
& \text { Nicotinamide } \\
& \text { adenine } \\
& \text { dinucleotide }+ \\
& \text { hydrogen }
\end{aligned}
$$

$3^{\text {rd }}$ step- Electron Transport Chain (ETC) $-3^{\text {rd }}$ step Occurs between \qquad in the mitochondria in all animals, plants and \qquad

- Uses high energy electrons (stored in NADH and \qquad) from Krebs to convert \qquad to ATP.
- Carrier proteins \qquad in the mitochondrial membrane pass high-energy \qquad along and
\qquad $\mathrm{H}+$ into the intermembrane space
- Oxygen is the final electron \qquad and combines with hydrogen to form water
- As the amount of $\mathrm{H}+$ builds in the \qquad space, one $\mathrm{H}+$ rushes back across the \qquad membrane causes ATP synthase to spin, re-energizing ADP to \qquad _.
- Each pair of e-generate enough energy to \qquad 3 ADP to 3 ATP.
- Total ATP = \qquad
- Total ATP generated in all steps of \qquad $=36$

Electron Transport Chain

Energy and Exercise

- Cells normally contain enough \qquad for a few seconds of intense activity.
- After 90 seconds, cellular respiration supplies ATP
- For long-term activity,

Cellular Respiration
\qquad stored in the
muscle is burned and lasts 15-20 minutes. After that, other
\qquad such as fat are burned for energy (aerobics, running \& swimming)

- Need to breathe \qquad after exercise to repay oxygen debt and
 rid body of \qquad acid

Comparing Photosynthesis and Cellular Respiration

- Photosynthesis does not release energy from glucose
- \qquad removes CO2 and \qquad returns it.
- \qquad in photosynthesis are \qquad in respiration.
- Cellular Respiration RELEASES energy through glucose, Photosynthesis STORES energy through glucose

Photosynthesis makes the glucose, cellular respiration breaks the glucose!

