Unit 3

. DNA History

1.) Rosalind Franklin-(Early 1950's) Used Xray diffraction to get an image of a DNA molecule 2.) Francis Crick and **James Watson-**(1953) Shown Franklin's X-ray pattern and used it to build a model of **DNA- "Double Helix"**

II. DNA Structure 1. Nucleic Acid is the polymer 2. <u>Nucleotide</u> is the monomer of DNA and is made of 3 parts: a) 5 carbon sugar- <u>Deoxyribose</u>

- a) 5 carbon sugar- **Deoxyrik**
- b) <u>Phosphate</u> molecule
- c) Nitrogenous **base**
 - I. <u>Adenine</u>- A
 - II. <u>Thymine</u>- T
 - III. <u>Cytosine</u>- C
 - ıv. <u>Guanine</u>- G

d) Elements of DNA: <u>CHONP</u>

Carbon, Hydrogen, Oxygen, Nitrogen & Phosphorus!

3. Base Paring Rule

a) Adenine – Thymine (A-T)
• <u>Apples</u> grow on <u>Trees</u>
b) Cytosine – Guanine (C-G)
• Cars go in Garages

c) *Nitrogen bases directly code for an organism's <u>traits</u>

4. Shape of DNA is a <u>double helix</u> "looks like a <u>twisted ladder</u>"

- a) <u>Deoxyribose</u> <u>sugar</u> and <u>phosphate</u> molecules make up the outside of the ladder
- b) <u>Nitrogen bases</u> make up the inside of the ladder (steps)
- c) Paired bases are held together by <u>weak</u> <u>hydrogen bonds</u>

DNA Function

1. Stores genetic information

2. Genetic information is **passed** to each **generation**

DNA Replication Steps

- 1. DNA <u>unwinds</u>
- DNA <u>unzips</u> with the help of an enzyme (protein) called <u>DNA</u> <u>Helicase</u> (*Helicase breaks the weak hydrogen bonds between paired bases)
- 3. An enzyme called <u>DNA Polymerase</u> joins many <u>nucleotides</u> back together
- End result is <u>2</u> complementary strands (one <u>original</u> strand, one <u>new</u> strand)

IV. Cell Limits in Prokaryotes & Eukaryotes

- 1. Problems with cell growth:
 - a) Most cells have to **divide**... WHY?
 - i. **DNA Overload** (Too much demand on DNA)
 - ii. Expelling wastes (Difficult to get ride of wastes)
 - iii. Obtaining nutrients (Nutrients have to travel farther)

V. Unicellular Life - Prokaryotes

A <u>single cell</u> makes up the entire organism

 a) ALL <u>prokaryotes</u> (Archaebacteria & Eubacteria)
 b) High rates of <u>reproduction</u>

	Chassification of Living Things								
DOMAIN	Bacteria	Archaea	Eukarya						
KINGDOM	Eubacteria	Archaebacteria	Protista	Fungi	Plantae	Animalia			
CELL TYPE	Prokaryote	Prokaryote	Eukaryote	Eukaryote	Eukaryote	Eukaryote			
CELL STRUCTURES	Cell walls with peptidoglycan	Cell walls without peptidoglycan	Cel walls of celulose in son e; some have chlo oplasts	Cell walls of chitin	Cell walls of cellulose; chloroplasts	No cell walls or chloroplasts			
	Unicellular	Unicellular	Mosi unicellular; some colonial; some muticellular	Most multicellular; some unicellular	Multicellular	Multicellular			
MODE OF NUTRITION	Autotroph or heterotroph	Autotroph or heterotroph	utotroph or neterotroph	Heterotroph	Autotroph	Heterotroph			
EXAMPLES	Streptococcus, Escherichia coli	Methanogens, halophiles	Amoeba, Paramecium, slime molds, giant kelp	Mushrooms, yeasts	Mosses, ferns, flowering plants	Sponges, worms, insects, fishes, mammals			

Î

Binary Fission – Prokaryotes (Asexual Reproduction)

- 1. Bacteria make identical cells through a process called **binary fission**
- Circular DNA is replicated & exchanged through <u>conjugation</u>
- 3. Cell divides in half
- Results are <u>2</u> identical bacterial cells (daughter cells) with the <u>SAME DNA</u>

Binary Fission... Continued Advantages:

a.) Only requires a <u>single</u> organism
b.) Reproduce <u>quickly</u> and increases
population numbers
c.) Less <u>energy</u> usage

HE WENT FISSIO

Disadvantages:

a.) All new cells are identical, so the only source of genetic variation are <u>mutations</u>

Cell Cycle & Cancer

CELL DIVISION

I. Multicellular Life-Eukaryotes

 Organisms composed of <u>two or more</u> cells (up to trillions of cells)

ľ	Classification of Livi .g Things								
	DOMAIN	Bacteria	Archaea	haea Eukarya					
Π	KINGDOM	Eubacteria	Archaebacteria	Protista	Fungi	Plantae	Animalia		
I	CELL TYPE	Prokaryote	Prokaryote	Eukaryote	Eukaryote	Eukaryote	Eukaryote		
	CELL STRUCTURES	Cell walls with peptidoglycan	Cell walls without peptidoglyca	Cell walls of cellulose in some; some have chlor ol <i>a</i> is	Cell walls of chitin	Cell walls of cellulose; chloroplasts	No cell walls or chloroplasts		
	NUMBER OF CELLS	Unicellular	Unicellular	Most unicenular, some colonial; some multicellular	multicellular; some unicellular	wulticenular	wulticellular		
	MODE OF	Autotroph or heterotroph	Autotroph or heterotroph	Autotroph or Naterotroph	Heterotroph	Autotroph	Heterotroph		
	EXAMPLES	Streptococcus, Escherichia coli	Methanogens, halophiles	A <i>mosba,</i> <i>Paramesium,</i> slime molds, giant kelp	Mushrooms, yeasts	Mosses, ferns, flowering plants	Sponger, wopus, insects, fishes, mammals		

2. Cell Specialization:
a) Cells become efficient in performing tasks and are <u>dependent</u> on other cells
b) Only found in <u>multicellular</u> organisms.

White blood cell

-All multicellular organisms have a COMPLETE SET of **DNA** in them!

Multicellular Life - Eukaryotes

4. Solution:

a) When cells become too large they must <u>**divide**</u> forming two "<u>**daughter**</u>" cells

b) DNA must <u>replicate</u> first in order for each daughter cell to have a <u>complete</u> copy of DNA

Interphase

<u>Longest</u> phase of the cell cycle. Cells spend the <u>majority</u> of their lives in this phase. DNA is called <u>chromatin</u>

1. G₁-1st Growth: Cell increases in <u>size</u>

2. S - DNA_Replication: **DNA** is copied. Eukaryotes have **linear** DNA

3. G₂ - 2nd Growth: Prepares to divide and copies organelles

Sister Chromatids are held together by a <u>Centromere</u>

Prophase - PREPARE

- -Chromatin condenses into chromosomes
- <u>-Centrioles</u> separate & spindle fibers begins to form
- -Nuclear envelope breaks down

Metaphase - MIDDLE

-Chromosomes line up in the <u>middle</u> -Chromosomes connect to <u>spindle</u> <u>fibers</u> at centromere

Anaphase - AWAY

-Spindle fibers pull sister chromatids **<u>apart</u>**

-Sister chromatids are pulled to **opposite** sides of the cell

Telophase - TWO

- -Chromosomes gather at opposite ends
- -Two new **nuclear envelopes** form

Cytokinesis

- -Cytoplasm pinches in <u>half</u>
- -Each newly formed daughter cell has <u>equal</u> numbers of chromosomes
- -Cell membrane pinches in the <u>center</u>
- -*In plant cells: a <u>cell plate</u> forms to separate the 2 cells

Stages of mitosis

Get it? ③

<u>Let's watch the whole process now.</u>

G_0 Phase **Resting phase** -No cell division -Some cells never leave this phase Nerve cells -Some cells never enter this phase •Skin cells

II. Regulating the Cell Cycle

To ensure each proper steps have been taken, the cell cycle is 'checked' or regulated by:

- 1. Cyclins
 - Proteins that regulate the <u>timing</u> of the cell cycle & jumpstart <u>cell division</u>
 - Internal Cyclins (cell won't divide unless DNA is copied)
 - External Cyclins (cells stop growing when they touch one other)
 - p53 gene (internal regulator)
 Growth Factors (proteins)

III. Cancer

Uncontrolled Cell Growth is called **cancer**

- 1. Cells lose the ability to control growth
- 2. Cells <u>stop responding</u> to signals that control growth
- 3. Cancer cells may have a defect in the **p53** gene

IV. Treatment of Cancer

Kills healthy

and cancer

cells

1. Radiation – gamma rays damage **DNA** in quickly reproducing cells

2. Chemotherapy- Chemicals that target rapidly dividing cells.

3. Surgery – removal of tumor (mass of cells)

